

CASE STUDY – PRIMARY SCHOOL

- Primary school with 73,960 sf in 2 stories
 - Current Energy Code Design reflects industry standards including:
 - Brick wall with steel frame backup wall
 - Central air handling units + hydronic BB, VAVs, packaged RTUs
 Natural gas SHW
- Optimized Design (NG) scenario includes ERV on Central Air Handler, gas-fired heating system, fan coil units & natural gas SHW
- Optimized Design (Elec) scenario includes DOAS with ERV, variable refrigerant flow (VRF) heating and cooling system & natural gas SHW

*Prior to Mass. Save Incentive

GOALS

TEDI (*Thermal Energy Demand Intensity*): represents annual heating OR cooling load per gross floor area of a building. Heating/cooling load is defined as amount of energy needed to meet thermostatic requirements of the space. The TEDI metric requires energy modeling and includes internal loads and anticipated building operation schedules. Outdoor air ERVs and other site energy recovered systems are included. Efficiency of active cooling & heating equipment is excluded (or assumed to be neutral at 1.0 COP) and resultant energy is represented as TEDI.

MAJOR TIPPING POINTS

Two primary building systems offered the greatest reduction in heating demand reduction for the Primary School prototype building:

Envelope System Performance: Heat loss in the envelope represents over 80% of total heating energy in the Primary School prototype. Significant heating load reduction can be achieved with three targeted performance improvements in the envelope system:

- Thermal bridge mitigation: The thermal performance of the building envelope is improved through mitigation of common thermal bridges. The optimized U-factor for the Above-Grade Wall assembly is U-0.055 including thermal bridge accounting.
- 2. Infiltration / Air leakage verification: The effectiveness of the envelope system is improved through building envelope commissioning and testing to achieve more stringent air leakage maximum requirements.
- 3. Window thermal performance: improved thermal performance of windows reduces heating demand as well as increases thermal comfort of building occupants which results in more consistent thermostatic setpoints.

Ventilation & Heat Recovery: The ventilation system heating load represents 20% of the total heating energy in the Primary School Prototype, with potential greater

	Current Energy Code	Optimized Design
HEATING ENERGY (kBtu/sf/yr)	9.6 (NG)	3.2 (NG) 0.9 (Elec)
ABOVE-GRADE WALL	U-0.055 C406 15% performance improvement applied, de-rated for thermal bridges	U-0.055 with thermal bridge accounting and mitigation
WINDOW	Fixed Windows (65%): U-0.38 Operable Windows (35%): U-0.45 C406 15% performance improvement applied WWR 22%	Fixed Windows (65%): U-0.25 Operable Windows (35%): U-0.30 WWR 22%
INFILTRATION	1.0 cfm/sf (limited inspections, no testing)	0.40 cfm/sf (required inspections and testing)
VENTILATION	Air Handlers supply 100% OA with cooling demand, ERV with 50% efficiency	DOAS (Elec only) + ERV – 75% sensible efficiency

impact if ventilation rates are increased due to health concerns. Dedicated Outdoor Air Systems (DOAS) with high rates of energy recovery significantly reduce the ventilation heating loads particularly in buildings with higher ventilation rates.

DEFINITIONS / REFERENCES / TECHNICAL NOTES

Current Energy Code Design: Corresponds to 9th edition of chapter 13 of 780 CMR with amendments effective from February 7,2020 & Stretch energy code as amended by Appendix AA. The base code for energy portions are based on 2018 International Energy Conservation Code.

Infiltration: The uncontrolled inward air leakage into a building caused by the pressure effects of wind or the effect of differences in the indoor and outdoor air density or both.

Thermal Bridge: elements that interrupt areas of uniform thermal resistance in the building envelope. Metal studs, brick ledges and window lintels, uninsulated slab edges, parapets, panel connections and girts, wall to floor intersections, curtain wall connections, wall to wall intersections, and balconies are all significant sources of thermal bridges. Mitigation includes thermal breaks and architectural details which minimize discontinuities. The *Building Envelope Thermal Bridging Guide* by BC Hydro¹ and the *Thermal Envelope Tool* by BC Housing² provide extensive resources related to thermal bridging and mitigation strategies.

Clear field thermal bridge: an area-based thermal transmittance associated with elements of a building envelope assembly which repeat at regular intervals. Examples of clear field thermal bridges include metal or wood studs, brick ties, and cladding attachments such as z-girts.

Linear thermal bridge: a length-based thermal transmittance associated with horizontal, vertical, or diagonal elements within the building envelope and with length measured along the exterior surface of the building envelope. Examples of linear thermal bridges include balconies or floor assemblies which penetrate walls in the building envelope, fenestration perimeter interfaces, parapets, and shelf angles. Linear thermal transmittance is heat flow divided by length and by the temperature difference between the interior and exterior sides of the assembly, represented by a Ψ-value (Psi-Value) in units Btu/hr•ft•°F (W/mK).

Point thermal bridge: an element-based thermal transmittance associated with a discrete element that penetrates the building envelope. Examples of point thermal bridges include a beam penetrating a wall, a column penetrating a roof or floor, and an anchor or connection used to attach an element to the building and not otherwise addressed as a clear field thermal bridge or linear thermal bridge. Point thermal transmittance is heat flow divided by the temperature difference between the interior and exterior side of the assembly, represented by a X-value (Chi-Value) in units Btu/hr*°F (W/K).

Building Envelope commissioning (BECx): process meant to provide quality assurance for building enclosure. Building envelope commissioning is required per IECC2021 energy code.

Blower door test: a test that is used to determine air leakage of a building/ section of a building. A blower door is a powerful fan that pressurizes a building. Typical blower tests are performed at pressure equivalencies of 50 Pascals. Standards such as ASHRAE use code minimum reference values at 75 Pascals(75PA).

DOAS- Dedicated Outdoor Air System: System dedicated to providing ventilation air needs for a building or space. DOAS units are equipped with handling latent & sensible loads of condition outside air and are independent from primary heating or cooling needs of the space.

Balanced ventilation: A balanced ventilation systems is designed to maintain a neutral pressure of the interior space with respect to outdoors. This system as opposed to supply only or exhaust only system is required to provide two streams of air into the space to balance supply and exhaust. This ensures a space is not infiltrating/ exfiltrating conditioned air to the outdoors.

² https://thermalenvelope.ca/

¹ https://www.bchydro.com/powersmart/business/programs/new-construction.html

BUILDING SYSTEMS (PRIMARY SCHOOL)

	OVOTEMO			
ENVELOPE		CURRENT ENERGY CODE	OPTIMIZED DESIGN	
Root	Type	Flat, built-up roof, composite metal decking, insulated above deck		
	Insulation	R-40 nominal insulation*	R-45 nominal insulation	
		R-35 derated for thermal bridge	R-40 derated for thermal bridge	
		accounting/mitigation	accounting/mitigation	
	Thermal	None	Thermal isolation pads at mech dunnage &	
	bridging		parapet structural thermal breaks	
	mitigation			
Exterior Wall	Туре	Steel-framed wall, brick finish system		
	Insulation	R-19 cavity + R-8.4 c.i.*	R-19 cavity + R-21 c.i.	
			U-0.055 (incl. thermal bridge accounting)	
	Thermal	None	Stand-off or thermally broken brick shelves,	
	bridging		and thermal isolation pads	
	mitigation		Thermal isolation blocks at base brick courses	
Slab on grade	Type, Insulation	6" concrete slab; R-10 for 24" vertical		
Window	Type, WWR	Metal-framed window, 22%		
	Assembly Max	U-0.33 (fixed)*	U-0.23 (fixed)	
	U-value	U-0.39 (operable)	U-0.28 (operable)	
		U-0.42 (skylights)	U-0.20 (skylights)	
	Thermal	None	Thermal insulation pads at windowsills, jambs	
	bridging		and head	
	mitigation			
Infiltration	Flow	1.0 cfm/sf at 75Pa	0.40 cfm/sf at 75PA	
	requirement			
	Other	No testing required	Testing and BECx required	
Component	Equation 4-2	Yes	Yes	
performance	compliance			
alternative				
*15% hetter performa	ance required to me	pet C406 7		

15% better performance required to meet C406.7

MECHANICAL SYSTEMS		CURRENT ENERGY CODE		OPTIMIZED DESIGN	
			Gas	Electric	
Ventilation	Туре	Packaged rooftop units (RTU)		Dedicated outdoor air	
		+ Variable air volume (VAV) AHUs		system (DOAS)	
	Capacity (CFM)	59,000	55,000	37,000	
	Energy Recovery	50% effectiveness	75% effectiveness		
Heating	Plant/source	Boiler		Variable refrigerant flow	
				(VRF) system	
	Capacity	2,600	1,400	1,320	
(kBTU/hr)					
	Terminals	Baseboards		VRF fan coil units	
Cooling	Plant/source	Direct expansion (DX)		DX + VRF system	
	Capacity (ton)	196		58 (DX) + 110 (VRF)	
	Terminals	VAV and CAV terminals		VRF fan coil units	

PLUMBING	HOT WATER	SERVICE HOT WATER		
Plant	Boiler	Natural gas SHW Heaters		
Capacity (GPM)	Current Energy Code: 165 GPM	5.84 GPM (peak)		
	Optimized Design: 90 GPM	Consumption: 1.55 gal/occ-day + 578 gal/day (kitchen)		
Pumping Type	Variable speed	Constant speed		
Pump Power (W/GPM)	16.0 W/GPM	8.0 W/GPM		
ELECTRICAL SYSTEM (ALL CASES)				
Includes: lighting, plug loads, kitchen, elevators, HVAC and service hot water system				
Peak electricity loads and the resulting transformer load is determined by the building's cooling load and therefore is				
consistent across all building prototype scenarios				
Total Transformer load: 300 kVA (x2)				
LIGHTING SYSTEM (ALL CASES)				

All installed lighting (interior and exterior) systems are to meet the minimum requirements of installed lighting power densities (0.61 W/ft² building average) as required in Current Energy Code plus additional efficiency required per C406.3.

CASE STUDY – SECONDARY SCHOOL

- Secondary school with 328,000 sf in 4 stories
 - Current Energy Code Design reflects industry standards including:
 - Brick veneer with steel frame backup wall
 - Central air handling units & hydronic BB, VAVs, packaged RTUs
 Natural gas SHW
- Optimized Design (NG) scenario includes DOAS with ERV, gas-fired heating system, fan coil units & natural gas SHW
- Optimized Design (Elec) scenario includes DOAS with ERV, electric heat pump boiler system, fan coil units & natural gas SHW

*Prior to Mass. Save Incentive

GOALS

TEDI (*Thermal Energy Demand Intensity*): represents annual heating OR cooling load per gross floor area of a building. Heating/cooling load is defined as amount of energy needed to meet thermostatic requirements of the space. The TEDI metric requires energy modeling and includes internal loads and anticipated building operation schedules. Outdoor air ERVs and other site energy recovered systems are included. Efficiency of active cooling & heating equipment is excluded (or assumed to be neutral at 1.0 COP) and resultant energy is represented as TEDI.

MAJOR TIPPING POINTS

Two primary building systems offered the greatest reduction in heating demand reduction for the Secondary School prototype building:

Envelope System Performance: Heat loss in the envelope represents 75% of total heating energy in the Secondary School prototype. Significant heating load reduction can be achieved with three targeted performance improvements in the envelope system:

- Thermal bridge mitigation: The thermal performance of the building envelope is improved through mitigation of common thermal bridges. The optimized U-factor for the Above-Grade Wall assembly is U-0.055 including thermal bridge accounting.
- 2. Infiltration / Air leakage verification: The effectiveness of the envelope system is improved through building envelope commissioning and testing to achieve more stringent air leakage maximum requirements.
- 3. Window thermal performance: improved thermal performance of windows reduces heating demand as well as increases thermal comfort of building occupants which results in more consistent thermostatic setpoints.

Ventilation & Heat Recovery: The ventilation system heating load represents 25% of the total heating energy in the Secondary School Prototype, with potential greater impact if ventilation rates are increased due to health

	Current Energy Code	Optimized Design
HEATING ENERGY INTENSITY (kBtu/sf/yr)	5.5 (NG)	0.9 (NG) 0.6 (Elec)
ABOVE-GRADE WALL	U-0.055 C406 15% performance improvement applied, de-rated for thermal bridges	U-0.055 with thermal bridge accounting and mitigation
WINDOW	Fixed Windows (65%): U-0.38 Operable Windows (35%): U-0.45 C406 15% performance improvement applied WWR 22%	Fixed Windows (65%): U-0.25 Operable Windows (35%): U-0.30 WWR 22%
INFILTRATION	1.0 cfm/sf (limited inspections, no testing)	0.40 cfm/sf (required inspections and testing)
VENTILATION	Air Handlers supply 100% OA with heating / cooling demand, no energy recovery	DOAS + ERV – 75% sensible efficiency

concerns. Dedicated Outdoor Air Systems (DOAS) with high rates of energy recovery significantly reduce the ventilation heating loads particularly in buildings with higher ventilation rates.

DEFINITIONS / REFERENCES / TECHNICAL NOTES

Current Energy Code Design: Reflects industry standard design which achieves 10% site energy savings over ASHRAE 90.1 2013 Appendix G and MA Amendments as required by the 9th edition of chapter 13 of 780 CMR with amendments effective from February 7,2020 & Stretch energy code as amended by Appendix AA.

Infiltration: The uncontrolled inward air leakage into a building caused by the pressure effects of wind or the effect of differences in the indoor and outdoor air density or both

Thermal Bridge: elements that interrupt areas of uniform thermal resistance in the building envelope. Metal studs, brick ledges and window lintels, uninsulated slab edges, parapets, panel connections and girts, wall to floor intersections, curtain wall connections, wall to wall intersections, and balconies are all significant sources of thermal bridges. Mitigation includes thermal breaks and architectural details which minimize discontinuities. The *Building Envelope Thermal Bridging Guide* by BC Hydro¹ and the *Thermal Envelope Tool* by BC Housing² provide extensive resources related to thermal bridging and mitigation strategies.

Clear field thermal bridge: an area-based thermal transmittance associated with elements of a building envelope assembly which repeat at regular intervals. Examples of clear field thermal bridges include metal or wood studs, brick ties, and cladding attachments such as z-girts.

Linear thermal bridge: a length-based thermal transmittance associated with horizontal, vertical, or diagonal elements within the building envelope and with length measured along the exterior surface of the building envelope. Examples of linear thermal bridges include balconies or floor assemblies which penetrate walls in the building envelope, fenestration perimeter interfaces, parapets, and shelf angles. Linear thermal transmittance is heat flow divided by length and by the temperature difference between the interior and exterior sides of the assembly, represented by a Ψ -value (Psi-Value) in units Btu/hr•ft•°F (W/mK).

Point thermal bridge: an element-based thermal transmittance associated with a discrete element that penetrates the building envelope. Examples of point thermal bridges include a beam penetrating a wall, a column penetrating a roof or floor, and an anchor or connection used to attach an element to the building and not otherwise addressed as a clear field thermal bridge or linear thermal bridge. Point thermal transmittance is heat flow divided by the temperature difference between the interior and exterior side of the assembly, represented by a X-value (Chi-Value) in units Btu/hr•°F (W/K).

Building Envelope commissioning (BECx): process meant to provide quality assurance for building enclosure. Building envelope commissioning is required per IECC2021 energy code.

Blower door test: a test that is used to determine air leakage of a building/ section of a building. A blower door is a powerful fan that pressurizes a building. Typical blower tests are performed at pressure equivalencies of 50 Pascals. Standards such as ASHRAE use code minimum reference values at 75 Pascals(75PA).

DOAS- Dedicated Outdoor Air System: System dedicated to providing ventilation air needs for a building or space. DOAS units are equipped with handling latent & sensible loads of condition outside air and are independent from primary heating or cooling needs of the space.

Balanced ventilation: A balanced ventilation systems is designed to maintain a neutral pressure of the interior space with respect to outdoors. This system as opposed to supply only or exhaust only system is required to provide two streams of air into the space to balance supply and exhaust. This ensures a space is not infiltrating/ exfiltrating conditioned air to the outdoors.

² https://thermalenvelope.ca/

¹ https://www.bchydro.com/powersmart/business/programs/new-construction.html

BUILDING SYSTEMS (SECONDARY SCHOOL)

ENVELOPE	SYSTEMS	CURRENT ENERGY CODE	OPTIMIZED DESIGN	
Roof <i>Type</i> Flat, built-up roof, composite metal decking, insulated above de			ecking, insulated above deck	
	Insulation	R-40 nominal insulation*	R-45 nominal insulation	
		R-35 derated for thermal bridge	R-40 derated for thermal bridge	
		accounting/mitigation	accounting/mitigation	
	Thermal bridging	None	Thermal isolation pads at mech dunnage &	
	mitigation		parapet structural thermal breaks	
Exterior Wall	Туре	Steel-framed wall, brick finish system		
	Insulation	R-19 cavity + R-8.4 c.i.*	R-19 cavity + R-21 c.i.	
			U-0.055 (incl. thermal bridge accounting)	
	Thermal bridging	None	Stand off or thermally broken brick shelves,	
	mitigation		and thermal isolation pads	
			Thermal isolation blocks at base brick courses	
Slab on grade	Type, Insulation	6" concrete slab; R-10 for 24" vertical		
Window	Type, WWR	Metal-framed window, 22%		
	Assembly Max	U-0.32 (fixed)*	U-0.23 (fixed)	
	U-value	U-0.38 (operable)	U-0.28 (operable)	
		U-0.38 (skylights)	U-0.20 (skylights)	
	Thermal bridging	None	Thermal insulation pads at windowsills, jambs	
	mitigation		and head	
Infiltration	Flow	1.0 cfm/sf at 75Pa	0.40 cfm/sf at 75PA	
	requirement			
	Other	No testing required	Testing and BECx required	
Component	Equation 4-2	Yes	Yes	
performance	compliance			
alternative				

*15% better performance required to meet C406.7

MECHANICAL SYSTEMS		CURRENT ENERGY CODE	OPTIMIZED DESIGN	
			Gas	Electric
Ventilation	Туре	Air handling units	Dedicated outdoor air system (DOAS)	
		Auditorium, gym, cafeteria - Pac	kaged rooftop units (RTU)	
	Capacity (CFM)	86,500	68,500	
	Energy Recovery	50% effectiveness	75% effectiveness	
Heating	Plant/source	Boiler (gas, mid efficiency)	Boiler (gas, condensing)	Boiler (heat pump)
	Capacity	4,500	3,600	3,300
	(kBTU/hr)			
	Terminals	Variable air volume (VAV) +	Fan coil units (FCU)	
		Baseboards		
Cooling	Plant/source	Chiller (water cooled) + Direct expansion (RTUs)		
	Capacity (ton)	600 (chiller) + 93 (DX)		
	Terminals	VAVs	Fan coil units, constant air volume (CAV) terminals	

PLUMBING	HOT WATER	CHILLED WATER	SERVICE HW	
Plant	Boilers	Chillers	Natural gas SHW Heaters	
Capacity (GPM)	Current Energy Code: 400	Current Energy Code: 655	All cases: 31 (peak)	
	Optimized Design: 330	Optimized Design: 970		
Pumping Type	Variable speed	Constant speed (primary),	Constant speed	
		Variable speed (secondary)		
Pump Power (W/GPM)	16.0 W/GPM	19.0 (primary)	8.0 W/GPM	
		22.0 (secondary)		
	ELECTRIC	CAL SYSTEM (ALL CASES)		
Includes: lighting, plug loads, kitchen, elevators, HVAC and service hot water system				
Peak electricity loads and the resulting transformer load is determined by the building's cooling load and therefore is				
consistent across all building prototype scenarios				
Total Transformer load: 300 kVA (x2)				
LIGHTING SYSTEM (ALL CASES)				
All installed lighting (interior and exterior) systems are to meet the minimum requirements of installed lighting power densities (0.61 W/ft ² building average) as required in Current Energy Code plus additional efficiency required per C406.3.				