Stretch Code & Schools

DOER briefing for MSBA Designer Roundtable October 20, 2022 Paul Ormond & Ian Finlayson

Agenda

- Three levels of code (base, stretch, municipal opt-in)
- Key modifications in the updated Stretch code
- Key modifications in the Specialized code
- School case studies

Base, Stretch, Specialized – 3 options

Base Code (IECC 2021)

- New construction in towns & cities not a green community
- 52 communities

Expected from BBRS: July 2023

Stretch Code (2023 update)

- New construction in towns & cities that are a green or stretch community
- 299 communities

Residential : Jan 2023 Commercial: July 2023

Specialized Code ("Net-Zero")

- New Construction in towns & cities that vote to opt-in to this code
- Effective date: Typically 6-11 months after Town/City vote

Model Energy Code Status

- Determination
 - 9.4% site energy
 - 8.8% source energy
 - 8.7% energy cost
 - 8.7% carbon emissions
- Removal of Electric-Readiness
- Removal of EVs
- Includes NZE Appendices

- Determination
 - 4.7% site energy
 - 4.3% source energy
 - 4.3% energy cost
 - 4.2% carbon emissions

<section-header><text><text><text><text><text>

STANDARD

Base, Stretch, Specialized – 3 options

STRETCH CODE

Stretch code compliance options

Commercial Stretch – Improved Efficiency

Emissions, electrification, comfort, durability, and resilience benefits

Total annual energy delivered to the building for spaceHeating TEDIconditioning and conditioning of ventilation air, normalized by area(kBtu/sf-yr)

Total annual energy removed from the building for spaceCooling TEDIconditioning and conditioning of ventilation air, normalized by area(kBtu/sf-yr)

Connection between TEDI and EUI

Heating end use EUI: 2 kBtu/sf-yr
Heating efficiency: 320%
Heating efficiency: 6.4 kBtu/sf-yr

TEDI is not the same as EUI. TEDI is a measure of envelope performance, air infiltration, and ventilation energy recovery.

EUI is a measure of the above, plus equipment efficiency.

TEDI is demand while EUI is consumption

Regulating TEDI means prioritizing envelope, air infiltration, and energy recovery

Benefits of TEDI limits

Impact on heating TEDI

- 85% less heating demand
- Emissions reduced
- Electrification easier
- Comfort
- Durability
- Resilience

TEDI limits

Size of School building	Heating TEDI limit (kBtu/sf-yr)	Cooling TEDI limit (kBtu/sf-yr)
K-12 school (>= 125,000-sf)	2.2	12
K-12 school (75,000 to 125,000)	2.7 – 0.000004 * Area (sf)	32 - 0.00016 * Area (sf)
K-12 school (<75,000)	2.4	20

The same models currently used for stretch code compliance also produce TEDI information

Strange equations simply draws straight line between values

Managing cooling TEDI

Managing cooling TEDI

- Low solar heat gain coefficient (SHGC) windows
- Recessed windows
- External shading
- Reduced air leakage rate

Whole building infiltration

Above photo: RDH/Advanced Building Analysis

- Limit of 0.35 cfm/sf at 75 Pa
- Mandatory field testing
- Credit for even lower air infiltration
- Passive House: routinely gets
 0.08 cfm/sf at 75 Pa

Above photo: Steven Winter Associates

Ventilation Energy Recovery

- Enthalpy recovery ratio: 70%
- Class 3 and 4: sensible recovery ratio: 50%

	Mantory Ventilation Energy Recovery (Systems Operating Less than 8,000 hours per year)								
ĺ		PERCENT (%) OUTDOOR AIR AT FULL DESIGN AIRFLOW RATE							
	<u>Climate</u> Zone	>=10% and <20%	>=20% and < 30%	>=30% and < 40%	>=40% and <50%	>=50% and <60%	>=60% and <70%	>=70% and <80%	>=80%
				Design S	upply Fan A	Airflow Ra	te (cfm)		
	<u>5A</u>	>= 10,000	>= 8,000	>= 2,750	0	0	0	0	(

Mantory Ventilation Energy Recovery (Systems Operating Not Less than 8,000 hours per year)								
	PERCENT (%) OUTDOOR AIR AT FULL DESIGN AIRFLOW RATE							
<u>Climate</u> Zone	>=10% and <20%	>=20% and < 30%	>=30% and < 40%	>=40% and <50%	>=50% and <60%	>=60% and <70%	>=70% and <80%	>=80%
	Design Supply Fan Airflow Rate (cfm)							
5 A	0	0	0	0	0	0	0	(
<u>3A</u>								

ER required for all but very small buildings for systems operating less ~ than 8,000 hours per year

ER required in all cases for systems operating more than 8,000 hours per year

Thermal bridge accounting

- "Continuous insulation" is <u>NOT</u> continuous. There are fasteners, often metal, which go through the insulation.
- Current stretch code only recognizes thermal bridges caused by wall studs. Current stretch code <u>does not recognize</u> thermal bridges caused by fasteners
- Fasteners have major impact on insulation performance

Fasteners: <u>Not</u> recognized by current code

Thermal bridge accounting

Fasteners made from fiberglass provide thermal break

- Solution is to include fasteners that have <u>thermal breaks</u>
- Thermal breaks are often <u>value engineered</u> out because code does not mandate thermal bridge accounting
- Proposed stretch code <u>will</u> mandate thermal bridge accounting which will help protect designs and ensure thermally broken fasteners are used.

Thermal bridge accounting

- 1. Parapet Length
- 2. Slab Lengths
- 3. Wall to Window Transition Lengths

Corner Length
 Opaque Brick Wall Area
 Glazing Area

- Many other thermal bridge locations not recognized by current strertch code
 - Continuous insulation
 - Brick shelves
 - Balconies/protrusions
 - Window/wall intersections
 - Parapets
 - Wall/wall intersections
 - Wall/floor intersections
- Updated stretch code does recognize these. Thermal breaks are available for all these locations

Electrification benefits

The proposed stretch code allows transition to electric heating (from gas) without increasing peak electric.

Durability benefits

A focus on heating/cooling TEDI results in:

- Smaller HVAC systems
- More robust envelope
- Less moving parts

Resilience/comfort benefits

stays above 55 F interior.

Emissions benefits

Emissions benefits

EV READY WIRING

Minimum 10% of spaces wired for Level II EVSE

- Recommended to use load management (ALMS)
- Options to use Level I for more spaces or DC fast-charging

TABLE C405.13.1 EV-READY PERFORMANCE REQUIREMENTS

Circuit Breaker Amperage	Maximum Parking Spaces that	Maximum Parking Spaces that
	May Share a Branch Circuit	May Share a Branch Circuit
	with 10%-60% EV Ready	with 61-100% EV Ready spaces
	spaces	
<u>40A</u>	<u>1</u>	<u>2</u>
<u>50A</u>	1	2
<u>60A</u>	<u>2</u>	<u>4</u>
<u>70A</u>	<u>3</u>	<u>6</u>
<u>80A</u>	<u>4</u>	<u>8</u>
<u>90A</u>	<u>5</u>	<u>9</u>
<u>100A</u>	<u>6</u>	<u>10</u>

EV wiring with ALMS – Advanced Load Management Systems for multiple vehicles

- Dedicated circuits to each vehicle (Current IECC model code language) lead to high installed capacity requirements
- Larger shared circuits allow multiple vehicles to charge at different rates, allowing similar charging while lowering electric capacity requirements (Canadian & Australian model language)

SPECIALIZED CODE

Base, Stretch, Specialized – 3 options

Specialized (Municipal opt-in) Code

Specialized code - Requirements

- Key Efficiency requirements in Stretch code
- All –electric or Pre-wired for Electrification
- Solar PV on available space minimum size
- EV ready 10% of spaces minimum

Solar PV

• Required:

- Using Fossil fuels
- Using Net Zero path
- Optional:
 - All-electric school
- Exceptions for shaded sites can reduce min. size

Solar PV minimum sizing

CC105.2 On-site renewable energy. New mixed-fuel buildings shall have equipment installed for on-site renewable energy with a rated capacity of not less than 1.5 W/ft^2 (16.1 W/m²) multiplied by the sum of the gross conditioned floor area of the three largest floors.

Exception: Where the building site cannot meet the requirement in full with an on-site renewable energy system, the building site shall install a partial system designed to utilize not less than 75% of the *Potential Solar Zone Area*.

Examples of minimum Solar PV size:

- 4 story 200,000 sf High school: 160,000 sf on 3 largest floors
 Min. Solar = 1.5 x 160,000 = 240 kW system
- 3 story 80,000 sf Elementary

Min. Solar = 1.5 x 80,000 = 120 kW system

Net Zero with On-site renewables

CASE STUDIES

• 74,000 sf Primary School

• 328,000 sf Secondary School

Case study: 74,000-sf primary school

Item	Current Stretch Code	Proposed Stretch Code		
Roof	R-40	R-45		
Wall	R-19 + 8.4 c.i.	R-19 + 21 c.i.		
Thermal breaks	None	Included		
% fenestration		22%		
Fixed window	U-0.33 (R-3.0 equiv)	U-0.23 (R-4.3 equiv)		
Operable window	U-0.39 (R-2.6 equiv)	U-0.28 (R-3.6 equiv)		
Infiltration	1 cfm at 75 Pa	0.4 cfm at 75 Pa		
Infiltration testing	No	Yes		
Heating plant	Gas mid-efficiency	Gas condensing OR air source VRF		
Heating terminals	Baseboard	VRF fan coil units		
Cooling plant	Direct expansion	Direct expansion OR VRF		
Cooling terminals	VAV/CAV	VAV/CAV OR VRF FCU		
Ventilation energy recovery	50%	75%		
Lighting	0.61 watts/sf average across whole building			

Primary School - target heating fuel reduction Heating Energy - TEDI

Primary School – maintain or reduce electric demand **Electricity – Monthly Peak Demand** 350 -2018 IECC with MA Amendments 300 -2021 IECC with MA Amendments 250 Peak Demand (kW) - Optimized Gas 200 --- Optimized Electric 150 100 Passive House Gas 50 --- Passive House Electric 0

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Steven Winter Associates, Inc.

Jan

Case study: 328,000-sf secondary school

Item	Current Stretch Code	Proposed Stretch Code		
Roof	R-40	R-45		
Wall	R-19 + 8.4 c.i.	R-19 + 21 c.i.		
Thermal breaks	None	Included		
% fenestration	22%			
Fixed window	U-0.32 (R-3.1 equiv)	U-0.23 (R-4.3 equiv)		
Operable window	U-0.38 (R-2.6 equiv)	U-0.28 (R-3.6 equiv)		
Infiltration	1 cfm at 75 Pa	0.4 cfm at 75 Pa		
Infiltration testing	No	Yes		
Heating plant	Gas mid-efficiency	Gas condensing OR central heat pump		
Heating terminals	VAV and baseboard	Fan coil units		
Cooling plant	Water cooled chiller with direct expansion RTUs			
Cooling terminals	VAV	Fan coil units, constant air volume terminals		
Ventilation energy recovery	50%	75%		
Lighting	0.61 watts/sf average across whole building			

Secondary School

Heating Energy - TEDI

Secondary School

Electricity – Monthly Peak Demand

Steven Winter Associates, Inc.

Questions?

Contact DOER:

Stretchcode@mass.gov

Paul Ormond

Ian Finlayson

Commercial and large multifamily

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

BS4

Residential low rise

NORESCO