SCHOOL AND MUNICIPAL BUILDINGS

140 Projects
8-year Period

Reasons for All-Electric Trend
- Improvement in heat pump technology
 - Air source heat pump operation down to zero degrees
 - Water source heat pump providing 130-degree water at 5 degrees
- EUI 25 to 35
- Efforts for decarbonization
- Rising natural gas prices

Electrical Distribution Considerations
- 50% increase in Service Size
- 100% increase in the Emergency Generator Size
GEOTHERMAL WELL FIELD

Pros:
- High energy efficiency
- Reduced carbon footprint for environmental considerations
- Low noise levels inside and outside of building as no exterior mounted equipment with condensers or fans are required
- Potential for heat recovery; simultaneous heating and cooling

Cons:
- Increased capital investment for geothermal plant
- Requires increased site coordination for well locations
- Higher automatic temperature controls for geothermal plant equipment
- Requires increased maintenance for geothermal plant equipment (filters, additional pumps, etc.)

Options:
- Traditional U-bends: HDPE (2 Pipe)
- Quad Loop: Double U-Bend (4 Pipe)
- Coaxial Rygan Well
TRADITIONAL U-BENDS: HDPE (2 PIPE)

Pros:

• Easiest to install.
• 6” diameter bore required (smaller than other options)
• Installed universally by most contractors.
• Heat-exchanger available with short notice.

Cons:

• Requires more drilling than the other options provided.
• Requires the most excavation.
• Least Heat Transfer of the three heat exchangers.
 ➢ Up to 3.25-tons per bore
 ➢ The comparison assumes 500-foot bores
• Installed universally by most contractors.
• Heat-exchanger available with short notice.
Pros:
- Provides up to 25% more Thermal capacity than a single u-bend
- Requires Less drilling than the traditional u-bend
- Less excavation than the traditional U-bends
- Can be installed to depths of 900-feet
- Up to 5-tons for a 600’ bore or 8-tons per 900-foot bore

Cons:
- May require a larger diameter bore than a traditional U-bends
- Limited contractors who install this heat-exchanger
- Heat exchanger requires a 4–6-week lead time to procure

Website: www.Versaprofiles.com
The HPGX system is a coaxal heat exchanger comprised of a composite material that provides the most efficient heat transfer of the three options.

Pros:
- Requires less drilling. Fewer bores required to achieve the desired transfer.
- Less impact to the site, reduced space needed.
- Less excavation than quad & traditional u-bend systems.
- Can be installed to depths of 1500-feet.
- Up to 10-tons per 1000-foot bore

Cons:
- Most costly to install-per foot cost.
- May require a larger diameter bore for exchanger at deeper depths.
- Limited certified installers
- Long lead times to procure product

Website: www.Rygancorp.com
MECHANICAL SYSTEM PAYBACK SUMMARY

SCHOOL EXAMPLE

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Hot water coil heating/chilled water coil cooling VAV AHU system with energy recovery and terminal VAV boxes with hot water radiant coils</td>
<td>$7,085,144</td>
<td>542,150</td>
<td>1,704.8</td>
<td>$108,430</td>
<td>$32,459</td>
<td>$150,910</td>
<td>$1.10</td>
<td>$52.1</td>
<td>$152,704</td>
<td>$1,450,500</td>
<td>$203,031</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Base Design

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Dehumidification displacement ventilation diffusers with radiant heating panels</td>
<td>$6,025,903</td>
<td>511,760</td>
<td>1,551.7</td>
<td>$102,930</td>
<td>$11,676</td>
<td>$122,031</td>
<td>$1.08</td>
<td>$29.2</td>
<td>$120,279</td>
<td>$91,100</td>
<td>$252,310</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Gas-fired heating/cooling VAV ventilating units with energy recovery with terminal VAV boxes with CO2 controls</td>
<td>$7,998,654</td>
<td>897,380</td>
<td>0.0</td>
<td>$175,478</td>
<td>$0</td>
<td>$122,078</td>
<td>$1.55</td>
<td>29.6</td>
<td>$300,000</td>
<td>$297,556</td>
<td>$-953,002</td>
<td>$-905,229</td>
<td>Not Reached</td>
</tr>
<tr>
<td></td>
<td>3. High efficiency water-cooled chiller plant with dry cooler</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Supplemental electric boiler plant</td>
<td></td>
</tr>
</tbody>
</table>

Tier 1

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Dehumidification displacement diffusers with radiant heating panels</td>
<td>$10,917,434</td>
<td>897,000</td>
<td>0.0</td>
<td>$133,400</td>
<td>$0</td>
<td>$121,079</td>
<td>$0.16</td>
<td>20.1</td>
<td>$121,079</td>
<td>$254,476</td>
<td>$6,144</td>
<td>$-2,307,572</td>
<td>Not Reached</td>
</tr>
<tr>
<td></td>
<td>2. Hot water coil heating/chilled water cooling VAV ventilating units with energy recovery with terminal VAV boxes with CO2 controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Geothermal wells with high-efficiency water-to-water source heat pump chillers</td>
<td></td>
</tr>
</tbody>
</table>

Tier 2

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Dehumidification displacement diffusers with radiant heating panels</td>
<td>$10,450,046</td>
<td>754,520</td>
<td>0.0</td>
<td>$150,823</td>
<td>$0</td>
<td>$122,078</td>
<td>$1.33</td>
<td>22.8</td>
<td>$122,078</td>
<td>$273,002</td>
<td>$-8,379</td>
<td>$-2,308,560</td>
<td>Not Reached</td>
</tr>
</tbody>
</table>

Tier 3

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Hot water coil heating/chilled water cooling VAV ventilating units with energy recovery with terminal VAV boxes with CO2 controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Geothermal wells with high-efficiency water-to-water source heat pump chillers</td>
<td></td>
</tr>
</tbody>
</table>

* Gross Capital Investment: The initial cost of implementing the system.
** Combined Expense Savings: Savings from energy usage over the life cycle.
*** Total Life-Cycle Savings: Total savings with discounting.
**** Discounted Payback: Time it takes to recover the initial investment with discounting.
Mechanical System Payback Summary

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Full air-conditioning displacement ventilation diffusers with passive heating radiation.</td>
<td>$7,818,915</td>
<td>$1,122,100</td>
<td>$177,175</td>
<td>$1.14</td>
<td>24.7</td>
<td>600,050.0</td>
<td>185,018.3</td>
<td>$23,150</td>
<td>$200,326</td>
<td>$50,547</td>
<td>$1,102,845</td>
</tr>
<tr>
<td>2</td>
<td>Variable refrigerant flow (VRF) terminal evaporator units with air-cooled condensing units serving the administration, classroom media center, and support areas.</td>
<td>$9,354,430</td>
<td>$1,220,000</td>
<td>$192,959</td>
<td>$1.24</td>
<td>26.9</td>
<td>752,082.2</td>
<td>124,100.6</td>
<td>$50,750</td>
<td>$243,709</td>
<td>$13,164</td>
<td>$1,746,335</td>
</tr>
<tr>
<td>3</td>
<td>Full air-conditioning displacement ventilation diffusers with passive heating radiation.</td>
<td>$10,044,815</td>
<td>$149,500</td>
<td>$149,807</td>
<td>$0.97</td>
<td>20.9</td>
<td>593,291.3</td>
<td>235,307.6</td>
<td>$18,150</td>
<td>$148,037</td>
<td>$98,836</td>
<td>$1,922,366</td>
</tr>
<tr>
<td>4</td>
<td>Full air-conditioning displacement ventilation diffusers with passive heating radiation.</td>
<td>$9,745,335</td>
<td>$1,435,000</td>
<td>$228,588</td>
<td>$1.46</td>
<td>31.8</td>
<td>853,682.0</td>
<td>7,083.1</td>
<td>$33,125</td>
<td>$299,713</td>
<td>$42,840</td>
<td>$1,010,599</td>
</tr>
</tbody>
</table>

School Example

GGD Consulting Engineers, Inc.
375 Faunce Corner Road, Suite D
Dartmouth, MA 02747
P (508) 998-5700 F (508) 998-4083